Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
ack_in2(0, n) -> ack_out1(s1(n))
ack_in2(s1(m), 0) -> u111(ack_in2(m, s1(0)))
u111(ack_out1(n)) -> ack_out1(n)
ack_in2(s1(m), s1(n)) -> u212(ack_in2(s1(m), n), m)
u212(ack_out1(n), m) -> u221(ack_in2(m, n))
u221(ack_out1(n)) -> ack_out1(n)
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
ack_in2(0, n) -> ack_out1(s1(n))
ack_in2(s1(m), 0) -> u111(ack_in2(m, s1(0)))
u111(ack_out1(n)) -> ack_out1(n)
ack_in2(s1(m), s1(n)) -> u212(ack_in2(s1(m), n), m)
u212(ack_out1(n), m) -> u221(ack_in2(m, n))
u221(ack_out1(n)) -> ack_out1(n)
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
ack_in2(0, n) -> ack_out1(s1(n))
ack_in2(s1(m), 0) -> u111(ack_in2(m, s1(0)))
u111(ack_out1(n)) -> ack_out1(n)
ack_in2(s1(m), s1(n)) -> u212(ack_in2(s1(m), n), m)
u212(ack_out1(n), m) -> u221(ack_in2(m, n))
u221(ack_out1(n)) -> ack_out1(n)
The set Q consists of the following terms:
ack_in2(0, x0)
ack_in2(s1(x0), 0)
u111(ack_out1(x0))
ack_in2(s1(x0), s1(x1))
u212(ack_out1(x0), x1)
u221(ack_out1(x0))
Q DP problem:
The TRS P consists of the following rules:
ACK_IN2(s1(m), s1(n)) -> ACK_IN2(s1(m), n)
ACK_IN2(s1(m), 0) -> U111(ack_in2(m, s1(0)))
ACK_IN2(s1(m), 0) -> ACK_IN2(m, s1(0))
U212(ack_out1(n), m) -> ACK_IN2(m, n)
ACK_IN2(s1(m), s1(n)) -> U212(ack_in2(s1(m), n), m)
U212(ack_out1(n), m) -> U221(ack_in2(m, n))
The TRS R consists of the following rules:
ack_in2(0, n) -> ack_out1(s1(n))
ack_in2(s1(m), 0) -> u111(ack_in2(m, s1(0)))
u111(ack_out1(n)) -> ack_out1(n)
ack_in2(s1(m), s1(n)) -> u212(ack_in2(s1(m), n), m)
u212(ack_out1(n), m) -> u221(ack_in2(m, n))
u221(ack_out1(n)) -> ack_out1(n)
The set Q consists of the following terms:
ack_in2(0, x0)
ack_in2(s1(x0), 0)
u111(ack_out1(x0))
ack_in2(s1(x0), s1(x1))
u212(ack_out1(x0), x1)
u221(ack_out1(x0))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACK_IN2(s1(m), s1(n)) -> ACK_IN2(s1(m), n)
ACK_IN2(s1(m), 0) -> U111(ack_in2(m, s1(0)))
ACK_IN2(s1(m), 0) -> ACK_IN2(m, s1(0))
U212(ack_out1(n), m) -> ACK_IN2(m, n)
ACK_IN2(s1(m), s1(n)) -> U212(ack_in2(s1(m), n), m)
U212(ack_out1(n), m) -> U221(ack_in2(m, n))
The TRS R consists of the following rules:
ack_in2(0, n) -> ack_out1(s1(n))
ack_in2(s1(m), 0) -> u111(ack_in2(m, s1(0)))
u111(ack_out1(n)) -> ack_out1(n)
ack_in2(s1(m), s1(n)) -> u212(ack_in2(s1(m), n), m)
u212(ack_out1(n), m) -> u221(ack_in2(m, n))
u221(ack_out1(n)) -> ack_out1(n)
The set Q consists of the following terms:
ack_in2(0, x0)
ack_in2(s1(x0), 0)
u111(ack_out1(x0))
ack_in2(s1(x0), s1(x1))
u212(ack_out1(x0), x1)
u221(ack_out1(x0))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 2 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
ACK_IN2(s1(m), s1(n)) -> ACK_IN2(s1(m), n)
ACK_IN2(s1(m), 0) -> ACK_IN2(m, s1(0))
U212(ack_out1(n), m) -> ACK_IN2(m, n)
ACK_IN2(s1(m), s1(n)) -> U212(ack_in2(s1(m), n), m)
The TRS R consists of the following rules:
ack_in2(0, n) -> ack_out1(s1(n))
ack_in2(s1(m), 0) -> u111(ack_in2(m, s1(0)))
u111(ack_out1(n)) -> ack_out1(n)
ack_in2(s1(m), s1(n)) -> u212(ack_in2(s1(m), n), m)
u212(ack_out1(n), m) -> u221(ack_in2(m, n))
u221(ack_out1(n)) -> ack_out1(n)
The set Q consists of the following terms:
ack_in2(0, x0)
ack_in2(s1(x0), 0)
u111(ack_out1(x0))
ack_in2(s1(x0), s1(x1))
u212(ack_out1(x0), x1)
u221(ack_out1(x0))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACK_IN2(s1(m), 0) -> ACK_IN2(m, s1(0))
ACK_IN2(s1(m), s1(n)) -> U212(ack_in2(s1(m), n), m)
Used argument filtering: ACK_IN2(x1, x2) = x1
s1(x1) = s1(x1)
U212(x1, x2) = x2
ack_in2(x1, x2) = ack_in
0 = 0
u111(x1) = u11
u212(x1, x2) = u21
ack_out1(x1) = ack_out
u221(x1) = u22
Used ordering: Quasi Precedence:
[ack_in, u21] > u11 > ack_out
[ack_in, u21] > u22 > ack_out
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACK_IN2(s1(m), s1(n)) -> ACK_IN2(s1(m), n)
U212(ack_out1(n), m) -> ACK_IN2(m, n)
The TRS R consists of the following rules:
ack_in2(0, n) -> ack_out1(s1(n))
ack_in2(s1(m), 0) -> u111(ack_in2(m, s1(0)))
u111(ack_out1(n)) -> ack_out1(n)
ack_in2(s1(m), s1(n)) -> u212(ack_in2(s1(m), n), m)
u212(ack_out1(n), m) -> u221(ack_in2(m, n))
u221(ack_out1(n)) -> ack_out1(n)
The set Q consists of the following terms:
ack_in2(0, x0)
ack_in2(s1(x0), 0)
u111(ack_out1(x0))
ack_in2(s1(x0), s1(x1))
u212(ack_out1(x0), x1)
u221(ack_out1(x0))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 1 less node.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
ACK_IN2(s1(m), s1(n)) -> ACK_IN2(s1(m), n)
The TRS R consists of the following rules:
ack_in2(0, n) -> ack_out1(s1(n))
ack_in2(s1(m), 0) -> u111(ack_in2(m, s1(0)))
u111(ack_out1(n)) -> ack_out1(n)
ack_in2(s1(m), s1(n)) -> u212(ack_in2(s1(m), n), m)
u212(ack_out1(n), m) -> u221(ack_in2(m, n))
u221(ack_out1(n)) -> ack_out1(n)
The set Q consists of the following terms:
ack_in2(0, x0)
ack_in2(s1(x0), 0)
u111(ack_out1(x0))
ack_in2(s1(x0), s1(x1))
u212(ack_out1(x0), x1)
u221(ack_out1(x0))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACK_IN2(s1(m), s1(n)) -> ACK_IN2(s1(m), n)
Used argument filtering: ACK_IN2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
ack_in2(0, n) -> ack_out1(s1(n))
ack_in2(s1(m), 0) -> u111(ack_in2(m, s1(0)))
u111(ack_out1(n)) -> ack_out1(n)
ack_in2(s1(m), s1(n)) -> u212(ack_in2(s1(m), n), m)
u212(ack_out1(n), m) -> u221(ack_in2(m, n))
u221(ack_out1(n)) -> ack_out1(n)
The set Q consists of the following terms:
ack_in2(0, x0)
ack_in2(s1(x0), 0)
u111(ack_out1(x0))
ack_in2(s1(x0), s1(x1))
u212(ack_out1(x0), x1)
u221(ack_out1(x0))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.